skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Ban"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract mRNA therapeutics are revolutionizing the pharmaceutical industry, but methods to optimize the primary sequence for increased expression are still lacking. Here, we design 5’UTRs for efficient mRNA translation using deep learning. We perform polysome profiling of fully or partially randomized 5’UTR libraries in three cell types and find that UTR performance is highly correlated across cell types. We train models on our datasets and use them to guide the design of high-performing 5’UTRs using gradient descent and generative neural networks. We experimentally test designed 5’UTRs with mRNA encoding megaTALTMgene editing enzymes for two different gene targets and in two different cell lines. We find that the designed 5’UTRs support strong gene editing activity. Editing efficiency is correlated between cell types and gene targets, although the best performing UTR was specific to one cargo and cell type. Our results highlight the potential of model-based sequence design for mRNA therapeutics. 
    more » « less